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A new method is described for applying fixed-shape, identical-molecule, or symmetry constraints to the 
least-squares refinement of groups of atoms by modifying the unconstrained coordinate shifts to satisfy 
the conditions of constraint after each refinement cycle. Application of the constraints requires negligible 
computation time compared to that for the usual refinement cycle. A new rational method is described 
for computing the translation and rotation of a group of atoms to give a best fit to a set of unconstrained 
coordinate shifts. 

Introduction 

Pawley (1969) has outlined the types of constraints 
which are of general interest in refinement of crystal 
structures by least-squares methods. The most stringent 
constraint is that of fixed shape. Here one or more 
groups of atoms is required to maintain a prescribed 
geometry; the rotational and translational coordinates 
for the whole group provide the six independent 
variables for refinement for each group. The second 
most restrictive type of constraint considered is the 
symmetry constraint. Here the shape of a group of 
atoms may vary subject to certain symmetry restric- 
tions. Two or more groups may be required to have 
the same shape (be identical) along with the symmetry 
restrictions. A given crystal structure may have more 
than one group of atoms falling into any of the above 
categories. 

Applications of such constraints in least-squares 
refinement methods to date have generally employed 
the derivative chain rule for each reflection to find the 
transformed derivatives of each structure factor which 
are then used to transform the calculation to a new 
and smaller set of independent variables. The reduction 
in number of variables is partly compensated by 
increased computational time for each reflection. Ex- 
pression of a wide variety of constraints seems also 
to require special programming efforts with results not 
convenient for a variety of computer systems, partic- 
ularly those limited in fast core storage. A general 
program system which includes all of the constraint 
types mentioned in a convenient working program 
system seems not to have been described previously. 

Doedens (1970) and Busing (1971) provide some 
limited discussion of methods employed to date and 
Pawley (1972) has provided a thorough review of con- 
straint methods. There are a variety of references in 
the literature to the use of such methods in problems 
involving disordered groups (Ibers, 1971) and usage 
of constraint methods to avoid meaningless fitting of 

parameters to an imprecise data set. We take as given 
the utility of application of constraint methods in 
such problems and do not feel the necessity of presen- 
ting another review of such applications to date. 
Refinement of a model of a small protein, rubredoxin, 
(Watenpaugh, Sieker, Herriott & Jensen, 1973) with a 
low reflection/parameter ratio is an example of a 
calculation which would probably benefit from a 
simple method for application of fixed-shape con- 
straints to portions of the various peptide and side- 
chain units. 

Summary of method 

We here outline a new general constraint method 
which provides a simple way to specify any of the types 
of constraint mentioned and apply these to the un- 
constrained coordinate shifts computed by each least- 
squares cycle to obtain an optimum set of coordinate 
shifts which do satisfy the constraints. The dimen- 
sionality of the refinement problem is not changed, i.e. 
the number of variables in the least-squares calculation 
of coordinate shifts is not reduced, but we feel the 
simplicity of use and other advantages to be discussed 
will indicate practical advantages for the method 
described here. 

The coordinates of each group in a convenient 
Angstrom coordinate system provide a reference basis 
for each group. The rotation and translation matrices 
specifying the mapping of this group basis into the 
actual crystal coordinates are updated using the un- 
constrained coordinate shifts provided by each re- 
finement cycle. This update procedure uses a least- 
squares criterion to find the optimum additional ro- 
tation and translation of the group to provide the best 
fit of constrained and unconstrained coordinate shifts. 
This is a key and novel feature of the method described 
here. Identical shapes for different groups and/or 
symmetry restrictions for groups of variable shape are 
then treated by adjustments of the reference basis 
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after the update of the basis-to-crystal coordinate 
mapping. 

The user-supplied inputs for start of a constrained 
refinement include the information usually provided 
for unconstrained refinement. The starting atomic co- 
ordinates are usually taken from a Fourier synthesis 
map and do not and here need not in general exactly 
satisfy any of the constraint criteria. Additional input 
information of interest here for the constrained re- 
finement then consists of a set of coordinates for each 
fixed-shape group in a convenient orthogonal Ang- 
strom coordinate system. This group basis coordinate 
system can be arbitrarily chosen to provide the easiest 
way for the user to give the relative positions of the 
the atoms in the group. Symmetry restrictions require 
input, for each symmetry operation of the group, of a 
3 × 3 matrix which describes the transformation of the 
basis coordinate axes under the symmetry operation. 
Specification of integers giving labels for equivalent 
atoms which transform into each other under the 
symmetry operations of the group then provide the 
rest of the information needed for application of sym- 
metry constraints. 

One limitation of the method as it has been developed 
and described here is that atoms in special positions in 
the asymmetric unit or an atom having one or more co- 
ordinates fixed, as is required for example by a polar 
space group, cannot be included in a constrained 
group, since the application of the least-squares cri- 
terion will move the special atoms along with the rest 
of the group. Such restrictions usually involve only a 
small number of atoms, usually only one, in these 
special cases. The rest of the atoms in the asymmetric 
unit may be freely included in the groups for applica- 
tion of constraints as desired. Any atom in the asym- 
metric unit also cannot be a member of more than 
one group of atoms for application of constraints by 
our method. 

The discussions which follow are in terms of non- 
linear groups. Minor changes in the computation, as 
described in Appendix IV permit operation with linear 
groups. These may be important as for example with 
CO or certain triatomic ligands in complex ion struc- 
tures. A two-atom fixed-shape group is also the sim- 
plest way to fix a bond length in a structure using the 
methods described here. 

An initialization procedure transforms the input 
atomic coordinate set into a set which satisfies the 
constraints before starting the first least-squares cycle. 
The constraint procedure described then operates on 
the unconstrained coordinate shifts produced by the 
usual calculations performed for the set of reflection 
data. No calculations are required by the constraint 
method during this reflection data processing, and the 
application of the constraint method to the coordinate 
shifts requires a time which is quite small compared to 
that for the refinement cycle. Since no constraint cal- 
culations are performed at the time of reflection data 
processing, the constraint application has been pro- 

grammed as a set of subroutines which can be easily 
added to a variety of least-squares programs. Conve- 
nience of overlay utilization makes this method par- 
ticularly attractive for computer systems limited in 
fast core storage. Listings, flowcharts, and documen- 
tation for use of the constraint subroutines described 
here are available on request from the authors. 

Outline of  algorithm 

The following provides a more detailed summary of the 
logic of operation of the constraint method. Appendices 
show proofs and details of the key rational transfor- 
mation methods. In the following description, atom 
coordinates and atom coordinate shifts are indicated 
in an orthogonal Angstrom coordinate system which 
is related through a simple matrix multiplication to 
the non-orthogonal crystal fractional coordinate system 
in usual use in the least-squares program. This trans- 
formation was incorporated in the constraint program 
but is essentially trivial in concept and will not be 
shown explicitly here. This transformation could also 
be included within the matrices performing the map- 
ping between the group reference basis coordinates and 
the general coordinate set with some changes to 
allow for a non-orthogonal crystal coordinate system 
in the constraint program. 

A. Initialization 

Since the starting atom coordinate set x ° does not in 
general satisfy the constraints, a coordinate set x is 
obtained from x ° which does satisfy the constraints 
exactly before starting the first refinement cycle. 

(a) Let X denote the set of reference coordinates for 
all bases. More than one group i may have the same 
group basis X~: and therefore be one of two or more 
structurally identical groups in the asymmetric unit. 
Xr is input for each type of fixed-shape group in what- 
ever group-centered orthogonal Angstrom coordinate 
system is most convenient for expression of the relative 
atomic positions in the group. For each group (what- 
ever the constraint type), three non-collinear atoms 
are specified from the atom list in x ° and three corres- 
ponding atoms are specified from the basic coordinate 
set X to define the initial transformation between 
group basis Xk and the group x °. Basis coordinates for 
the three reference atoms must be input for groups 
with non-fixed shape restrictions to provide a definition 
of the basis coordinate system Xk. The method used 
to produce the initial 3 x3 group rotation matrix 
R~,k and the column translation matrix a~,k for each 
group is described in Appendix I. 

(b) For fixed shape groups, 

x~, k = Rt, kXk + at, k (1) 

for each identical group i having the common input 
basis Xk. X~,k then satisfies the fixed-shape constraint 
and corresponds sufficiently closely to x 7. k to provide a 
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group coordinate set for use in the first refinement 
cycle. 

(c) For identical groups and/or groups with sym- 
metry constraints, an acceptable basis must be defined: 

0 __ --1 0 
X ~ . k - - R i , ~ ( X ~ , k - - a i , k )  . 

The set of bases {X0,k} for the Lk groups having 
identical shape will not be identical because of the 
approximate nature of x ° ~.k, so these are averaged to 
find a single basis for identical groups, 

Lk 

xk= X°JLk. (2) 
i = l  

If no symmetry constraints, only identical-shape con- 
straints, exist, the averaged basis from (2) is used in 
equation (1) to calculate the satisfactory starting co- 
ordinate sets for all groups of the basis k. 

(d) If symmetry constraints exist, the basis obtained 
from (2) must be symmetrized to provide group co- 
ordinates which satisfy such constraints. If Ark is the 
number of atoms in the group, and the 3Nk× 3Nk 
matrix Ss, k gives the transformation of coordinates 
of atoms for symmetry operation s of basis k, then 
symmetrization of the basis X, from (2) is achieved 
by the operations equivalent to taking 

Mg 
X~ y m =  ~ Ss. kXk/Mk. (3)  

s = l  

Here the full set of Ss, k matrices would not only be 
exceedingly troublesome to set up by hand for input 
but would also require excessive computer storage 
space for groups with many atoms and more than two 
or three symmetry operations. An example may be 
seen in the similar matrix used in a special symmetry 
constraint problem by Strouse (1970). However, speci- 
fication of the 3 × 3 matrices giving the group basis co- 
ordinate axis transformations under the symmetry 
operations of the group, specifications of integer labels 
giving the sets of symmetry-equivalent atoms of the 
group, and labels for symmetry-equivalent atoms 
which transform into a chosen atom of each set of 
symmetry-related atoms under the symmetry opera- 
tions, are sufficient for the program to carry out the 
symmetrization implied by (3) without input of the 
cumbersome full set of Ss, k matrices. The symmetrized 
basis Xk is then used in (1) to provide the starting co- 
ordinates for all identical groups with the group sym- 
metry constraints. 

B. Application of  constraint conditions to coordinate 
shifts 

After each cycle of least-squares refinement we have, 
for each group i with reference basis k, the atom co- 
ordinates x used in the refinement cycle and the cal- 
culated unconstrained coordinate shifts Ax. In addi- 
tion, we have the matrices R and a relating x to the 
reference basis X and which were produced from 

either the initialization procedure or the previous re- 
finement cycle. 

(a) Find the rigid-body translation and rotation of 
the group which minimizes the quantity 

Nk 
(Aye-  Axj) 2 (4) 

j = l  

where Ax~ is the unconstrained coordinate-shift vector 
computed for atom j of the group (i,k), Ayj is the co- 
ordinate-shift vector produced from an infinitesimal 
translation and rotation of the group as defined by 

Ayj = a + 2p x xj (5) 

and Ark is the number of atoms in the basis and in each 
corresponding group. The uniqueness of the vectors 
a and p in minimizing (4) for the group and the exact 
evaluation of these vectors by rational means are 
shown in Appendix III. It is to be emphasized that 
the minimization of (4) by this computationally simple 
means is the key to the constraint method given here. 
The 3 × 3  rotation matrix R+(p) for a rotation by 
0--2 tan-1 ][~l is computed from p (see Appendix II), 
and the new group coordinates x' computed assuming 
only a rigid-group translation and rotation are needed 
are given as 

x ' = a + R + ( p ) x  (6) 

= a +  R+(~)a + R+ (II)RX. (7) 

The first two terms in (7) are then stored as the up- 
dated at,k, and the matrix product R+(p) R is stored 
as the updated R matrix. 

(b) For fixed-shape groups, the constraint process 
is completed by the calculation of the constrained co- 
ordinate shift Ax C for the group 

Ax ~ = a + R X -  x .  (8) 

(c) For identical shape and/or symmetry constraints, 
the basis X must now be adjusted to accommodate, in- 
sofar as possible, the parts of the unconstrained co- 
ordinate shifts which cannot be handled by a simple 
group translation and rotation computed in (a). Using 
the updated R and a matrices, we compute a group 
basis resulting from the unconstrained coordinate 
shifts 

X = R  -~ . ( A x + x - a ) .  (9) 

(d) If more than one group having identical shape 
exists for basis k, we average the basis computed by (9) 
for each identical group using (2) to find a basis X 
which will be used by all groups for this basis. 

(e) If symmetry restrictions exist, the basis is sym- 
metrized using (4). 

( f )  The constrained coordinate shifts are now 
computed from (8) using the averaged and/or symme- 
trized basis for the group. 

The constrained coordinate shifts Ax C are then 
applied to the coordinates x and another refinement 
cycle is repeated if convergence is not achieved. 
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Trial application 

The method was programmed in Fortran IV as a set of 
subroutines which were added to a standard block- 
diagonal least-squares program. These routines re- 
quired 13800 bytes of core storage when used with an 
overlay structure, and 19000 bytes without the overlay 
separation. The common variable storage for arrays 
of coordinates and coordinate shifts and the group- 
orientation matrices varies with the number of atoms; 
6200 bytes were required for 80 atoms in up to 12 
groups. Most of this could be stored in disc files when 
required for large problems having many groups with 
constraints. 

A C26N4H20 structure (Chesick, 1973) having four 
benzene rings was used as a trial for the method. The 
four rings provided a means of testing all types of 
constraints. Operation of the constraint routine was 
compared with the unconstrained operation using the 
same data set and starting atom coordinates. These 
initial coordinates were those obtained from an E 
Fourier map phased from direct-methods calculations. 
The published structure gave calculated values for the 
24 ring C-C distances which showed a standard devia- 
tion from the mean of 0.02 A. A trial of the constraint 
method with one ring constrained to be hexagonal 
with Rcc = 1.38 A, two rings constrained to be identical 
and planar, and the fourth ring constrained to be 
planar with a vertical mirror plane showed that all 
atoms had maximum deviations from their respective 
ring planes of 0.7 × 10-4 A, the maximum deviation of 
the six C-C bond lengths of the fixed shape ring was 
0.5 × 10 -4 A from the input value, and pairs of bonds 
which were constrained to be identical showed maxi- 
mum differences of 0-1 x 10 -3 /~ after four cycles of 
refinement. Pairs of bond lengths for the rings having 
identical shape and symmetry constraints were close 
to averages of corresponding bond lengths obtained 
in the unconstrained refinement run under otherwise 
identical input conditions. Convergence to minimum 
R value and ~(IFcalcl--Fobs) z seemed to be equally 
rapid for the constrained and unconstrained calcula- 
tions, although these criteria were of course slightly 
larger for the constrained case. 

APPENDIX I 
Initial rotation and translation 

Three atoms in the group basis X may be used to 
define three orthogonal unit vectors u, v, and w in this 
coordinate system with origin of these vectors located 
on one of the basis atoms at p in the basis coordinate 
system. Three corresponding atoms in the coordinate 
system x are similarly used to define three orthogonal 
unit vectors u', v', and w' with origin on one atom at 
p' in this system. The 3 × 3  matrices U and U' are 
constructed by taking these unit vectors as columns, 
or U=(n,v,w) and U'=(u ' ,v , 'w ' ) .  Then the transfor- 
mation matrices a and R for the transformation x = a + 

RX are given by R =  U'U r and a = p ' - R p ,  where U r 
is the transpose of U. 

APPENDIX II 
A rational parametrization of rigid-body motions 

Over a century ago, Cayley (1846) introduced a rational 
parametrization of the group of rotations about a 
fixed point in three-dimensional Euclidian space. His 
method has been used to parametrize many symmetry 
groups (Weyl, 1946; Lorente, 1974) and we apply it 
here to the group of rigid-body motions in three space. 
In addition to translations and rotations about any 
axis, not necessarily through the origin, these include 
the motions of a turning and advancing screw, with 
arbitrary pitch and axis. 
Theorem 1" For each pair of three-vectors, a and 13, 
the map which takes each point r in three space into 

r* = r + a  + (-~-4_-2fl~-)[13 x r + 13 x (13 × r)] (II.1) 

is a rigid-body motion consisting of a rotation by an 
angle 2 arc tan [l~] about the 13 axis, followed by a 
translation by a. Every rigid-body motion by an angle 
other than 180 ° is given by just one pair of vectors a 
and 13. 
Proof: When 13=0, tlae theorem is true since (II-1) 
then clearly specifies a translation by a. When 13-#0, 
we can express any r as a sum, (r ~ + ri) ,  where r t~ is in 
the direction of 13 and r .  is perpendicular to 13. Since 
[5 x r~ = 0  and 13 x (13 x r l )= - - f l2 rz ,  we have from (II.1) 
that 

[ 1-13 z { 21131 
)  i713  f 13×r./1131 • (1J.2) r * = r ,  \ Tg-p  

The vectors r± and p x r . / l  P l are perpendicular vectors 
of equal length. The squares of their coefficients 
(l_f12)/(1 +flz) and 21ill/(1 +flz) sum to one, so that 
the last two terms on the right of (I1.2) can be expres- 
sed as (cos 0)r±+(sin 0)13 x r±/1131, with tan 0=21131/(1 
_f lz)  or tan (0/2)= 113 I. As 13 increases in length, 0 can 
be brought arbitrarily close to 180 ° so that any ro- 
tation by an angle other than 180 ° can be so expressed. 
Q.E.D. 

For computational purposes, it is convenient to ex- 
press (II.1) in the form r* = a + R r  where R is the 3 x 3 
rotation matrix: 

1 
= . . . . .  

l + p  z 

1 +flz _ f l z  fl~ 2(flxflr-f lz)  2(flx&+fir) ] 
2(flyflx +flz) 1 -flax +fl~-fi,2z 2(,8vBz-,8.0 
2 ( flz flx - fly ) 2(/3.-fir+fix) 1 -  /3 zx - fl zy + flZz 

as can be verified by rewriting (II.1) in terms of the 
components of r and 13. This matrix is orthogonal, i.e., 
its inverse equals its transpose. Rotations by 180 ° can 
be obtained from this matrix by dropping the 1 from 
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the diagonal terms and from the denominator of the 
common factor. 

The components of r* are rational functions (i.e. 
ones requiring only finite numbers of sums, differences, 
products or ratios and not fractional roots or trans- 
cendental functions) of r and the vector parameters a 
and 11. The parameters a and 11 for the product of two 
group operations are also rational functions of the 
parameters for each factor. For these reasons, this 
parametrization is defined to be rational. The shift in 
position r * - r  when ~t and p are small is, to first order, 
r * - r = a + 2 1 1 x r .  The use of this approximation 
corresponds to identifying the angle of rotation with 
its sine and tangent. 

APPENDIX III 
Least-squares determination of the parameters 

for rigid-body motions 

We determine the parameter vectors a and 11 by re- 
quiring that they minimize Y~(~t + 2 p x r~ - v~) z, where 
r~ is the position of the ith atom in an array, v~ is an 
unconstrained displacement vector for the ith atom 
and the sum is over all atoms in the array. This selects 
the rigid-body motion which minimizes the square 
deviations between the first-order approximation a +  
211 x r~ to the rigid-body displacements and the un- 
constrained displacements v~. 

The determination of the optimum a and 11 is 
facilitated by first defining a 3 x 3 matrix which would 
give the moment of inertia tensor for the array if each 
atom had mass 1/N where N is the number of atoms in 
the array. We define 

1 (z>=y, z, 

1 1 2 z,-<z>" 

1 1 
<AxAy)='£,-~ ( x , - ( x ) )  ( y , - < y ) ) =  ~., ~ x,y, 

-<x> <y> 
and similarly for other components x, y and z of r. 
The matrix for the moment of inertia tensor is then 

[ < Z 2 y + Z 2 z >  - <ZxZy) - <ZxZz> ] 
I=l-(AyAx ) (A2x+AZz)-(AyAz) ] (III.1) 

L-<ZzZx> -<ZzZy> <Z'x+Z2y>. 
Theorem 2: If rl, rz, . . . , r~- are N points in Euclidean 
space which do not all lie on one line, and vl, v2, . . . ,  vN 
are N arbitrary vectors, then there is a unique pair of 
vectors a and p which minimize ~ ( a  + 21~ x r~ - v,) 2. It 
is given by p = ½ / - l ( ( r  × v ) - ( r )  × (v)) and 

a =  ( v ) -  2p x ( r ) ,  

where I is given by (III.1), 

1 1 
( r ) = ~ , -  N- r , , ( v ) = ~ ,  -N v, 

and 
1 

- ~  r i  x v i . 

Proof. Differentiating with respect to the components 
of a, we obtain the condition 

~ ( a + 2 p  × r t - v i ) = 0  

for a to be optimum, and 

~ (~t+2p × r i - v i )  × r , = 0  

for 11 to be optimum. 
Dividing the first of these by N, we obtain 

a =  <v>-  2p x <r> 

and substituting this for a in the second gives, after 
some vector algebra, 

2 I p = < r  x v > -  <r> x <v>. 

To complete the proof, it remains only to show that 
I is invertible when the r, do not all lie on any one line. 
In place of a mathematical demonstration, we use a 
physical argument based on the fact that for any unit 
vector n, n .  In is the moment of inertia of the array 
about an axis in the direction of n through the center 
of inertia of the array. This is zero if and only if all the 
atoms lie on such an axis. If this is not the case, then 
n .  In > 0 for all non-zero vectors, so that 1 is positive 
definite and hence invertible. Q.E.D. 

We can interpret Theorem 2 mechanically as follows. 
Consider an array of N atoms of equal mass which is 
initially at rest. If the ith atom is initially at r~ and is 
then given an impulse which in the absence of con- 
straints would give it a velocity v~, then with rigid-body 
constraints a hypothetical point on the array located 
at the origin would acquire a linear velocity a, while 
the array acquires an angular velocity 2p. The center 
of inertia of the array, initially located at (r) ,  then 
acquires a linear velocity a + 2 p  x (r) .  

APPENDIX IV 
Modifications for linear groups 

(a) lnitial rotation and translation. 
The vectors u and u' define the linear group and are 

taken to be the interatomic vectors between equivalent 
pairs of atoms in the basis group and in the crystal co- 
ordinate system x. Arbitrary (but non-collinear 
vectors) are defined, and then the vectors v, v', w, and 
w' are defined through vector cross-product relations. 
R and a are then obtained and used as in Appendix I. 

(b) Rigid-body translations and rotations for least- 
squares fit to unconstrained displacements 

The matrix I is computed as described in Appendix 
III. If we define s =  (r x v ) -  ( r )  x (v), then for the non- 
linear group, Appendix III found the rotation-param- 
eter vector P = ½ I - l s .  1-1 cannot (or should not) be 
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calculated fol a linear group. For a linear group 

[1=-} i s r l s ]  s ,  

where T denotes the transpose operation. If s r l s ~ s r s ,  
set p--0. All else is the same as for non-linear groups. 
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Simulation des Trajets des Champs d' Ondes darts un Cristal Contenant une Dislocation 

PAR Y. EPELBOIN* 

Laboratoire de Mindralogie Cristallographie, associd au CNRS, Universitd P. et M. Curie, 4 place Jussieu, 
75230 Paris Cddex 05, France 

(Refu le 4 fdvrier 1975, acceptd le 25 f~vrier 1975) 

The X-ray intensity distribution in the incident plane for a crystal containing a straight dislocation has 
been computed. The trajectories of the wave fields have been drawn in the case of a planar or spherical 
incident wave, and it has been shown that the interaction of the defect with the X-rays gives rise to new 
directions of propagation, near the reflected direction. It has also been shown that the importance of this 
interaction decreases when the defect comes near the reflected direction. 

Introduction 

Bien que la topographic par la m6thode de Lang soit 
maintenant d 'un usage tr6s courant, l 'interpr6tation 

* Ce travail constitue une partie d'une th6se de Doctorates 
Sciences Physiques de l'Universit6 de Paris, enregistr6e au 
CNRS sous le num6ro A09961. 
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Fig. 1. Formation de l'image d'un d6faut en topographic. 1 
image directe, 2 image interm6diaire, 3 image dynamique. 

du contraste des images obtenues reste difficile. Depuis 
plusieurs ann6es de nombreux auteurs ont essay6 de 
comprendre l'origine des trois parties que l 'on distingue 
habituellement: l'image directe, l 'image interm6diaire 
et l'image dynamique (Fig. 1). 

Kambe (1963) a expliqu6 la formation de l'image 
dynamique d'une dislocation par l 'optique g6om6trique 
en interpr6tant sa forme, comme 6tant la caustique des 
rayons qui ont 6t6 courb6s au voisinage du d6faut. 
Ceci correspond aux travaux th6oriques de Penning & 
Polder (1961) ou Kato (1963). 

Dans ces th6ories appel6es th6ories g~om6triques, le 
point caract6ristique d 'un champ d'ondes glisse sur la 
branche de l 'hyperbole 5. laquelle il appartient lorsque 
le cristal est d6form6. Cela provient du fait que le 
vecteur r6ciproque local est modifi6 et qu'en chaque 
point la surface de dispersion doit 8tre redessin6e, ou, 
ce qui revient au mSme, le point caract6ristique de ce 
champ d6plac6 sur l 'hyperbole. Dans le cristal, le 
trajet des rayons X est donc courb6 sans qu'un champ 
d'ondes change de nature: un champ d'ondes 1 reste 
un champ d'ondes 1. 

Mais ceci est insuffisant pour interpr6ter compl~te- 
ment le contraste de l'image d'un d6faut; l 'image inter- 
m6diaire d'un dislocation, par exemple, pr6sente des 


